Title of article :
Spectral properties of primal-based penalty preconditioners for saddle point problems
Author/Authors :
Shen، نويسنده , , Shu-Qian and Huang، نويسنده , , Ting-Zhu and Zhong، نويسنده , , Erjie Cui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
2235
To page :
2244
Abstract :
For large and sparse saddle point linear systems, this paper gives further spectral properties of the primal-based penalty preconditioners introduced in [C.R. Dohrmann, R.B. Lehoucq, A primal-based penalty preconditioner for elliptic saddle point systems, SIAM J. Numer. Anal. 44 (2006) 270–282]. The regions containing the real and non-real eigenvalues of the preconditioned matrix are obtained. The model of the Stokes problem is supplemented to illustrate the theoretical results and to test the quality of the primal-based penalty preconditioner.
Keywords :
Eigenvalue , Saddle point problem , Block preconditioner , Krylov subspace method
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555518
Link To Document :
بازگشت