Title of article :
Tempered stable Lévy motion and transient super-diffusion
Author/Authors :
Baeumer، نويسنده , , Boris and Meerschaert، نويسنده , , Mark M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
11
From page :
2438
To page :
2448
Abstract :
The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion equation governs the transition densities, which progress from super-diffusive early-time to diffusive late-time behavior. This article provides finite difference and particle tracking methods for solving the tempered fractional diffusion equation with drift. A temporal and spatial second-order Crank–Nicolson method is developed, based on a finite difference formula for tempered fractional derivatives. A new exponential rejection method for simulating tempered Lévy stables is presented to facilitate particle tracking codes.
Keywords :
Fractional derivatives , Particle tracking , Power law , Truncated power law
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555537
Link To Document :
بازگشت