Title of article :
The optimal convergence rate of a finite element method for non-smooth domains
Author/Authors :
Soane، نويسنده , , Ana Maria and Suri، نويسنده , , Manil and Rostamian، نويسنده , , Rouben، D.C. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
2711
To page :
2723
Abstract :
We establish optimal (up to arbitrary ε > 0 ) convergence rates for a finite element formulation of a model second order elliptic boundary value problem in a weighted H 2 Sobolev space with 5th degree Argyris elements. This formulation arises while generalizing to the case of non-smooth domains an unconditionally stable scheme developed by Liu et al. [J.-G. Liu, J. Liu, R.L. Pego, Stability and convergence of efficient Navier–Stokes solvers via a commutator estimate, Comm. Pure Appl. Math. 60 (2007) pp. 1443–1487] for the Navier–Stokes equations. We prove the optimality for both quasiuniform and graded mesh refinements, and provide numerical results that agree with our theoretical predictions.
Keywords :
Corner singularities , Graded meshes , Optimal convergence rates , Finite elements , Non-convex polygonal domains
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555560
Link To Document :
بازگشت