Title of article :
On the implementation of a log-barrier progressive hedging method for multistage stochastic programs
Author/Authors :
Liu، نويسنده , , Xinwei and Toh، نويسنده , , Kim-Chuan and Zhao، نويسنده , , Gongyun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
579
To page :
592
Abstract :
A progressive hedging method incorporated with self-concordant barrier for solving multistage stochastic programs is proposed recently by Zhao [G. Zhao, A Lagrangian dual method with self-concordant barrier for multistage stochastic convex nonlinear programming, Math. Program. 102 (2005) 1–24]. The method relaxes the nonanticipativity constraints by the Lagrangian dual approach and smoothes the Lagrangian dual function by self-concordant barrier functions. The convergence and polynomial-time complexity of the method have been established. Although the analysis is done on stochastic convex programming, the method can be applied to the nonconvex situation. We discuss some details on the implementation of this method in this paper, including when to terminate the solution of unconstrained subproblems with special structure and how to perform a line search procedure for a new dual estimate effectively. In particular, the method is used to solve some multistage stochastic nonlinear test problems. The collection of test problems also contains two practical examples from the literature. We report the results of our preliminary numerical experiments. As a comparison, we also solve all test problems by the well-known progressive hedging method.
Keywords :
Lagrangian dual , Log-barrier method , Progressive hedging method , Multistage stochastic programs
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555652
Link To Document :
بازگشت