Title of article :
Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction–diffusion problems
Author/Authors :
Zhu، نويسنده , , Guoqing John Chen، نويسنده , , Shaochun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The numerical approximation by a lower order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving singular perturbation problems. The quasi-optimal order error estimates are proved in the ε -weighted H 1 -norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε -weighted H 1 -norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
Keywords :
Singular Perturbation , Graded meshes , error estimates , Finite elements
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics