Title of article :
New accelerated conjugate gradient algorithms as a modification of Dai–Yuan’s computational scheme for unconstrained optimization
Author/Authors :
Andrei، نويسنده , , Neculai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
3397
To page :
3410
Abstract :
New accelerated nonlinear conjugate gradient algorithms which are mainly modifications of Dai and Yuan’s for unconstrained optimization are proposed. Using the exact line search, the algorithm reduces to the Dai and Yuan conjugate gradient computational scheme. For inexact line search the algorithm satisfies the sufficient descent condition. Since the step lengths in conjugate gradient algorithms may differ from 1 by two orders of magnitude and tend to vary in a very unpredictable manner, the algorithms are equipped with an acceleration scheme able to improve the efficiency of the algorithms. Computational results for a set consisting of 750 unconstrained optimization test problems show that these new conjugate gradient algorithms substantially outperform the Dai–Yuan conjugate gradient algorithm and its hybrid variants, Hestenes–Stiefel, Polak–Ribière–Polyak, CONMIN conjugate gradient algorithms, limited quasi-Newton algorithm LBFGS and compare favorably with CG_DESCENT. In the frame of this numerical study the accelerated scaled memoryless BFGS preconditioned conjugate gradient ASCALCG algorithm proved to be more robust.
Keywords :
conjugate gradient method , sufficient descent condition‎ , Newton direction , Numerical comparisons , Conjugacy condition , Unconstrained optimization
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555926
Link To Document :
بازگشت