Title of article :
The spectral properties of the preconditioned matrix for nonsymmetric saddle point problems
Author/Authors :
Li، نويسنده , , Jian-Lei and Huang، نويسنده , , Ting-Zhu and Li، نويسنده , , Liang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
270
To page :
285
Abstract :
In this paper, on the basis of matrix splitting, two preconditioners are proposed and analyzed, for nonsymmetric saddle point problems. The spectral property of the preconditioned matrix is studied in detail. When the iteration parameter becomes small enough, the eigenvalues of the preconditioned matrices will gather into two clusters—one is near ( 0 , 0 ) and the other is near ( 2 , 0 ) —for the PPSS preconditioner no matter whether A is Hermitian or non-Hermitian and for the PHSS preconditioner when A is a Hermitian or real normal matrix. Numerical experiments are given, to illustrate the performances of the two preconditioners.
Keywords :
SPECTRAL , Matrix splitting , preconditioner , Eigenvalue analysis , Nonsymmetric saddle point problems
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555958
Link To Document :
بازگشت