Title of article :
Testing for serial correlation in multivariate regression models
Author/Authors :
Bo E. and Kyriazidou، نويسنده , , Ekaterini، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Pages :
28
From page :
193
To page :
220
Abstract :
This paper considers the problem of detecting serial correlation in the disturbances of a multivariate regression model, when these are known to be correlated up to a known finite lag Q⩾0 and are possibly conditionally heteroskedastic. We extend the results of Cumby and Huizinga (1992) to the case of a linear dynamic system of equations, and derive the asymptotic distribution of a vector of sample autocovariances of the regression residuals. This distribution is used to construct a test for serial correlation at lags greater than Q. A comparative Monte Carlo study of the small-sample behavior of various tests in the case of purely autoregressive series reveals that the proposed test performs satisfactorily, while tests that are commonly used in the literature are found to lead to serious size distortions under conditional heteroskedasticity.
Keywords :
Conditional heteroskedasticity , Multivariate Regression , serial correlation
Journal title :
Journal of Econometrics
Serial Year :
1998
Journal title :
Journal of Econometrics
Record number :
1556828
Link To Document :
بازگشت