Title of article :
The sensitivity of OLS when the variance matrix is (partially) unknown
Author/Authors :
Banerjee، نويسنده , , Anurag N. and Magnus، نويسنده , , Jan R.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1999
Pages :
29
From page :
295
To page :
323
Abstract :
We consider the standard linear regression model y=Xβ+u with all standard assumptions, except that the variance matrix is assumed to be σ2Ω(θ), where Ω depends on m unknown parameters θ1,…, θm. Our interest lies exclusively in the mean parameters β or Xβ. We introduce a new sensitivity statistic (B1) which is designed to decide whether ŷ (or β̂) is sensitive to covariance misspecification. We show that the Durbin–Watson test is inappropriate in this context, because it measures the sensitivity of σ̂2 to covariance misspecification. Our results demonstrate that the estimator β̂ and the predictor ŷ are not very sensitive to covariance misspecification. The statistic is easy to use and performs well even in cases where it is not strictly applicable.
Keywords :
Linear regression , least squares , autocorrelation , Durbin–Watson test , Sensitivity
Journal title :
Journal of Econometrics
Serial Year :
1999
Journal title :
Journal of Econometrics
Record number :
1556937
Link To Document :
بازگشت