Title of article :
Consistent Estimation Under Random Censorship When Covariables Are Present
Author/Authors :
Stute، نويسنده , , W.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1993
Pages :
15
From page :
89
To page :
103
Abstract :
Assume that (Xi, Yi), 1 ≤ i ≤ n, are independent (p + 1)-variate vectors, where each Yi is at risk of being censored from the right and Xi is a vector of observable covariables. We introduce a (p + 1)-dimensional extension of the Kaplan-Meier estimator and show its consistency. Also a general strong law for Kaplan-Meier integrals is proved, which, e.g., may be utilized to prove consistency of a new regression parameter estimator under random censorship.
Journal title :
Journal of Multivariate Analysis
Serial Year :
1993
Journal title :
Journal of Multivariate Analysis
Record number :
1556970
Link To Document :
بازگشت