Title of article :
Schur properties of convolutions of exponential and geometric random variables
Author/Authors :
Boland، نويسنده , , Philip J. and El-Neweihi، نويسنده , , Emad and Proschan، نويسنده , , Frank، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1994
Pages :
11
From page :
157
To page :
167
Abstract :
Convolutions of random variables which are either exponential or geometric are studied with respect to majorization of parameter vectors and the likelihood ratio ordering (⩾lr) of random variables. Let Xλ, …, Xλn be independent exponential random variables with respective hazards λi (means 1/λi), i = 1 …, n. Then if λ = (λ1, …, λn) ⩾m (λ1′, …, λn′) = λ′, it follows that Σi = 1n Xλ ⩾lr Σi = 1n Xλ′1. Similarly if Xp1, …, Xpn are independent geometric random variables with respective parameters p1, …, pn, then p = (p1, …, pn) ⩾m(p′1, …, p′n) = p′ or log p = (log p1, …, log pn) ⩾ m (log p1, …, log pn) = log p′ implies Σi = 1n Xpl ⩾ lr Σi = 1n XP′1. Applications of these results are given yielding convenient upper bounds for the hazard rate function of convolutions of exponential (geometric) random variables in terms of those of gamma (negative binomial) distributions. Other applications are also given for a server model, the range of a sample of i.i.d. exponential random variables, and the duration of a multistate component performing in excess of a given level.
Keywords :
Hazard rate order , Likelihood ratio order , majorization , convolution , Schur convex , Stochastic order
Journal title :
Journal of Multivariate Analysis
Serial Year :
1994
Journal title :
Journal of Multivariate Analysis
Record number :
1557111
Link To Document :
بازگشت