Title of article :
Strong Consistency of Bayes Estimates in Stochastic Regression Models
Author/Authors :
Hu، نويسنده , , Inchi Hu، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1996
Abstract :
Under minimum assumptions on the stochastic regressors, strong consistency of Bayes estimates is established in stochastic regression models in two cases: (1) When the prior distribution is discrete, the p.d.f.fof i.i.d. random errors is assumed to have finite Fisher informationI=∫∞−∞(f′)2/f dx<∞; (2) for general priors, we assumefis strongly unimodal. The result can be considered as an application of a theorem of Doob to stochastic regression models.
Keywords :
stochastic regressor , System identification , Martingale , Dynamic model , Adaptive control , Bayes estimates , strongly unimodal
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis