Title of article :
Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators
Author/Authors :
Li، نويسنده , , Tong and Vuong، نويسنده , , Quang، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Pages :
27
From page :
139
To page :
165
Abstract :
This paper considers the nonparametric estimation of the densities of the latent variable and the error term in the standard measurement error model when two or more measurements are available. Using an identification result due to Kotlarski we propose a two-step nonparametric procedure for estimating both densities based on their empirical characteristic functions. We distinguish four cases according to whether the underlying characteristic functions are ordinary smooth or supersmooth. Using the loglog Law and von Mises differentials we show that our nonparametric density estimators are uniformly convergent. We also characterize the rate of uniform convergence in each of the four cases.
Keywords :
multiple indicators , measurement error model , Nonparametric density estimation , uniform convergence rate , Fourier transformation
Journal title :
Journal of Multivariate Analysis
Serial Year :
1998
Journal title :
Journal of Multivariate Analysis
Record number :
1557500
Link To Document :
بازگشت