Title of article :
On the Geometrical Convergence of Gibbs Sampler inRd
Author/Authors :
Hwang، نويسنده , , Chii-Ruey and Sheu، نويسنده , , Shuenn-Jyi، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Pages :
16
From page :
22
To page :
37
Abstract :
The geometrical convergence of the Gibbs sampler for simulating a probability distribution inRdis proved. The distribution has a density which is a bounded perturbation of a log-concave function and satisfies some growth conditions. The analysis is based on a representation of the Gibbs sampler and some powerful results from the theory of Harris recurrent Markov chains.
Keywords :
geometrical convergence , nonlinear autoregression , stochastic relaxation , Metropolis algorithm , Monte Carlo Markov chain , Gibbs sampler , Harris recurrence , Markov chain
Journal title :
Journal of Multivariate Analysis
Serial Year :
1998
Journal title :
Journal of Multivariate Analysis
Record number :
1557511
Link To Document :
بازگشت