Title of article :
Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model
Author/Authors :
Hobert، نويسنده , , James P. and Geyer، نويسنده , , Charles J.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Abstract :
We consider fixed scan Gibbs and block Gibbs samplers for a Bayesian hierarchical random effects model with proper conjugate priors. A drift condition given in Meyn and Tweedie (1993, Chapter 15) is used to show that these Markov chains are geometrically ergodic. Showing that a Gibbs sampler is geometrically ergodic is the first step toward establishing central limit theorems, which can be used to approximate the error associated with Monte Carlo estimates of posterior quantities of interest. Thus, our results will be of practical interest to researchers using these Gibbs samplers for Bayesian data analysis.
Keywords :
Bayesian model , Central limit theorem , drift condition , Monte Carlo , variance components , Rate of convergence , Markov chain
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis