Title of article :
A Strong Representation of the Product-Limit Estimator for Left Truncated and Right Censored Data
Author/Authors :
Zhou، نويسنده , , Hai-Yong and Yip، نويسنده , , Paul S.F.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1999
Pages :
20
From page :
261
To page :
280
Abstract :
In this paper we consider the TJW product-limit estimatorFn(x) of an unknown distribution functionFwhen the data are subject to random left truncation and right censorship. An almost sure representation of PL-estimatorFn(x) is derived with an improved error bound under some weaker assumptions. We obtain the strong approximation ofFn(x)−F(x) by Gaussian processes and the functional law of the iterated logarithm is proved for maximal derivation of the product-limit estimator toF. A sharp rate of convergence theorem concerning the smoothed TJW product-limit estimator is obtained. Asymptotic properties of kernel estimators of density function based on TJW product-limit estimator is given.
Keywords :
Truncated data , Censored data , product-limit estimator , almost sure representation
Journal title :
Journal of Multivariate Analysis
Serial Year :
1999
Journal title :
Journal of Multivariate Analysis
Record number :
1557581
Link To Document :
بازگشت