Title of article :
On Parameters of Increasing Dimensions
Author/Authors :
He، نويسنده , , Xuming and Shao، نويسنده , , Qi-Man Shao، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2000
Pages :
16
From page :
120
To page :
135
Abstract :
In statistical analyses the complexity of a chosen model is often related to the size of available data. One important question is whether the asymptotic distribution of the parameter estimates normally derived by taking the sample size to infinity for a fixed number of parameters would remain valid if the number of parameters in the model actually increases with the sample size. A number of authors have addressed this question for the linear models. The component-wise asymptotic normality of the parameter estimate remains valid if the dimension of the parameter space grows more slowly than some root of the sample size. In this paper, we consider M-estimators of general parametric models. Our results apply to not only linear regression but also other estimation problems such as multivariate location and generalized linear models. Examples are given to illustrate the applications in different settings.
Keywords :
logistic regression , Self-normalization , M-estimator , Linear regression , exponential inequality , Increasing dimension , Asymptotic approximation , spatial median
Journal title :
Journal of Multivariate Analysis
Serial Year :
2000
Journal title :
Journal of Multivariate Analysis
Record number :
1557638
Link To Document :
بازگشت