Title of article :
Minimax Hierarchical Empirical Bayes Estimation in Multivariate Regression
Author/Authors :
Oman، نويسنده , , Samuel D.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2002
Pages :
17
From page :
285
To page :
301
Abstract :
The multivariate normal regression model, in which a vector y of responses is to be predicted by a vector x of explanatory variables, is considered. A hierarchical framework is used to express prior information on both x and y. An empirical Bayes estimator is developed which shrinks the maximum likelihood estimator of the matrix of regression coefficients across rows and columns to nontrivial subspaces which reflect both types of prior information. The estimator is shown to be minimax and is applied to a set of chemometrics data for which it reduces the cross-validated predicted mean squared error of the maximum likelihood estimator by 38%.
Keywords :
James–Stein estimate , Mean squared error , prior information , subspace shrinkage
Journal title :
Journal of Multivariate Analysis
Serial Year :
2002
Journal title :
Journal of Multivariate Analysis
Record number :
1557760
Link To Document :
بازگشت