Title of article :
A Generalized φ-Divergence for Asymptotically Multivariate Normal Models
Author/Authors :
Wegenkittl، نويسنده , , Stefan، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2002
Abstract :
I. Csiszárʹs (Magyar. Tud. Akad. Mat. Kutató Int. Közl8 (1963), 85–108) ϕ-divergence, which was considered independently by M. S. Ali and S. D. Silvey (J. R. Statist. Soc. Ser. B28 (1966), 131–142) gives a goodness-of-fit statistic for multinomial distributed data. We define a generalized φ-divergence that unifies the ϕ-divergence approach with that of C. R. Rao and S. K. Mitra (“Generalized Inverse of Matrices and Its Applications,” Wiley, New York, 1971) and derive weak convergence to a χ2 distribution under the assumption of asymptotically multivariate normal distributed data vectors. As an example we discuss the application to the frequency count in Markov chains and thereby give a goodness-of-fit test for observations from dependent processes with finite memory.
Keywords :
distribution of statistics , Hypothesis testing , asymptotic distribution theory , Markov processes: hypothesis testing (Inference from stochastic processes)
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis