Title of article :
Bayesian networks for discrete multivariate data: an algebraic approach to inference
Author/Authors :
Smith، نويسنده , , J.Q. and Croft، نويسنده , , J.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2003
Abstract :
In this paper we demonstrate how Grِbner bases and other algebraic techniques can be used to explore the geometry of the probability space of Bayesian networks with hidden variables. These techniques employ a parametrisation of Bayesian network by moments rather than conditional probabilities. We show that whilst Grِbner bases help to explain the local geometry of these spaces a complimentary analysis, modelling the positivity of probabilities, enhances and completes the geometrical picture. We report some recent geometrical results in this area and discuss a possible general methodology for the analyses of such problems.
Keywords :
Hidden variables , Grِbner basis , latent class analysis , graphical models , Bayesian networks
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis