Title of article :
Functional canonical analysis for square integrable stochastic processes
Author/Authors :
He، نويسنده , , Guozhong and Müller، نويسنده , , Hans-Georg and Wang، نويسنده , , Jane-Ling، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2003
Pages :
24
From page :
54
To page :
77
Abstract :
We study the extension of canonical correlation from pairs of random vectors to the case where a data sample consists of pairs of square integrable stochastic processes. Basic questions concerning the definition and existence of functional canonical correlation are addressed and sufficient criteria for the existence of functional canonical correlation are presented. Various properties of functional canonical analysis are discussed. We consider a canonical decomposition, in which the original processes are approximated by means of their canonical components.
Keywords :
Canonical correlation , Covariance operator , Hilbert–Schmidt operator , functional data analysis , Inverse problem , Canonical decomposition
Journal title :
Journal of Multivariate Analysis
Serial Year :
2003
Journal title :
Journal of Multivariate Analysis
Record number :
1557870
Link To Document :
بازگشت