Title of article :
Estimating the covariance matrix: a new approach
Author/Authors :
Kubokawa، نويسنده , , T. and Srivastava، نويسنده , , M.S.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2003
Pages :
20
From page :
28
To page :
47
Abstract :
In this paper, we consider the problem of estimating the covariance matrix and the generalized variance when the observations follow a nonsingular multivariate normal distribution with unknown mean. A new method is presented to obtain a truncated estimator that utilizes the information available in the sample mean matrix and dominates the James–Stein minimax estimator. Several scale equivariant minimax estimators are also given. This method is then applied to obtain new truncated and improved estimators of the generalized variance; it also provides a new proof to the results of Shorrock and Zidek (Ann. Statist. 4 (1976) 629) and Sinha (J. Multivariate Anal. 6 (1976) 617).
Keywords :
Generalized variance , covariance matrix , Improvement , decision theory , Stein result , Bartlettיs decomposition , Minimax estimation
Journal title :
Journal of Multivariate Analysis
Serial Year :
2003
Journal title :
Journal of Multivariate Analysis
Record number :
1557892
Link To Document :
بازگشت