Title of article :
Invariant tests for symmetry about an unspecified point based on the empirical characteristic function
Author/Authors :
Henze، نويسنده , , N. and Klar، نويسنده , , B. and Meintanis، نويسنده , , S.G.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2003
Abstract :
This paper considers a flexible class of omnibus affine invariant tests for the hypothesis that a multivariate distribution is symmetric about an unspecified point. The test statistics are weighted integrals involving the imaginary part of the empirical characteristic function of suitably standardized given data, and they have an alternative representation in terms of an L2-distance of nonparametric kernel density estimators. Moreover, there is a connection with two measures of multivariate skewness. The tests are performed via a permutational procedure that conditions on the data.
Keywords :
Skewness in the sense of Mَri , Rohatgi and Székely , Mardiaיs measure of multivariate skewness , Empirical characteristic function , Affine invariance , Permutational limit theorem , Test for symmetry
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis