Title of article :
Best-possible bounds on sets of bivariate distribution functions
Author/Authors :
Nelsen، نويسنده , , Roger B and Molina، نويسنده , , José Juan Quesada and Lallena، نويسنده , , José Antonio Rodr??guez and Flores، نويسنده , , Manuel ?beda، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2004
Pages :
11
From page :
348
To page :
358
Abstract :
The fundamental best-possible bounds inequality for bivariate distribution functions with given margins is the Fréchet–Hoeffding inequality: If H denotes the joint distribution function of random variables X and Y whose margins are F and G, respectively, then max(0,F(x)+G(y)−1)⩽H(x,y)⩽min(F(x),G(y)) for all x,y in [−∞,∞]. In this paper we employ copulas and quasi-copulas to find similar best-possible bounds on arbitrary sets of bivariate distribution functions with given margins. As an application, we discuss bounds for a bivariate distribution function H with given margins F and G when the values of H are known at quartiles of X and Y.
Keywords :
Kendallיs tau , Quartiles , bounds , Distribution functions , Copulas , Quasi-copulas
Journal title :
Journal of Multivariate Analysis
Serial Year :
2004
Journal title :
Journal of Multivariate Analysis
Record number :
1558003
Link To Document :
بازگشت