Title of article :
The restricted EM algorithm under inequality restrictions on the parameters
Author/Authors :
Shi، نويسنده , , Ning-Zhong and Zheng، نويسنده , , Shurong and Guo، نويسنده , , Jianhua، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2005
Abstract :
One of the most powerful algorithms for maximum likelihood estimation for many incomplete-data problems is the EM algorithm. The restricted EM algorithm for maximum likelihood estimation under linear restrictions on the parameters has been handled by Kim and Taylor (J. Amer. Statist. Assoc. 430 (1995) 708–716). This paper proposes an EM algorithm for maximum likelihood estimation under inequality restrictions A0β⩾0, where β is the parameter vector in a linear model W=Xβ+ε and ε is an error variable distributed normally with mean zero and a known or unknown variance matrix Σ>0. Some convergence properties of the EM sequence are discussed. Furthermore, we consider the consistency of the restricted EM estimator and a related testing problem.
Keywords :
EM algorithm , Fixed point , Incomplete data , Maximum likelihood estimation , Multivariate normal model
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis