Author/Authors :
Hu، نويسنده , , Taizhong and Xie، نويسنده , , Chaode، نويسنده ,
Abstract :
Dependence properties of occupancy numbers in the balls and bins experiment are studied. Applying such properties, we investigate further dependence structures of order statistics X 1 : n ⩽ X 2 : n ⩽ ⋯ ⩽ X n : n of n independent random variables X 1 , X 2 , … , X n with possibly different distributions. For 1 ⩽ i < j 1 < j 2 < ⋯ < j r ⩽ n and fixed ( x 1 , … , x r ) , we show that P ( X j 1 : n > x 1 , X j 2 : n > x 2 , … , X j r : n > x r | X i : n > s ) is increasing in s, and that if event A i , s is either { X i : n > s } or { X i : n ⩽ s } then P ( X j 1 : n > x 1 , X j 2 : n > x 2 , … , X j r : n > x r | A i , s ) is decreasing in i for fixed s. It is also shown that in this situation, if each random variable X k has a continuous distribution function and if A i , s is either { X i - 1 : n < s < X i : n } or { X i : n = s } then P ( X j 1 : n > x 1 , X j 2 : n > x 2 , … , X j r : n > x r | A i , s ) is decreasing in i for fixed s. We thus complement and extend some results in Dubhashi and Ranjan [Balls and bins: a study in negative dependence, Random Struct. Algorithms 13 (1998) 99–124] and Boland et al. [Bivariate dependence properties and order statistics, J. Multivar. Anal. 56 (1996) 75–89].
Keywords :
Negative regression dependent , Negative left tail dependent , Negative right tail dependent , Order statistics , Generalized multinomial distribution , Usual stochastic order