Title of article :
Non-parametric kernel regression for multinomial data
Author/Authors :
Okumura، نويسنده , , Hidenori and Naito، نويسنده , , Kanta، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Pages :
14
From page :
2009
To page :
2022
Abstract :
This paper presents a kernel smoothing method for multinomial regression. A class of estimators of the regression functions is constructed by minimizing a localized power-divergence measure. These estimators include the bandwidth and a single parameter originating in the power-divergence measure as smoothing parameters. An asymptotic theory for the estimators is developed and the bias-adjusted estimators are obtained. A data-based algorithm for selecting the smoothing parameters is also proposed. Simulation results reveal that the proposed algorithm works efficiently.
Keywords :
Non-parametric regression , Multinomial data , Kernel smoothing , Power-divergence measure
Journal title :
Journal of Multivariate Analysis
Serial Year :
2006
Journal title :
Journal of Multivariate Analysis
Record number :
1558535
Link To Document :
بازگشت