Title of article :
Estimation of covariance matrices in fixed and mixed effects linear models
Author/Authors :
Kubokawa، نويسنده , , Tatsuya and Tsai، نويسنده , , Ming-Tien، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Pages :
20
From page :
2242
To page :
2261
Abstract :
The estimation of the covariance matrix or the multivariate components of variance is considered in the multivariate linear regression models with effects being fixed or random. In this paper, we propose a new method to show that usual unbiased estimators are improved on by the truncated estimators. The method is based on the Stein–Haff identity, namely the integration by parts in the Wishart distribution, and it allows us to handle the general types of scale-equivariant estimators as well as the general fixed or mixed effects linear models.
Keywords :
Mixed effects model , Multivariate normal distribution , Stein identity , Variance component , Wishart distribution , covariance matrix , decision theory , Estimation , Improvement , Haff identity , James–Stein estimator , linear regression model , Minimaxity
Journal title :
Journal of Multivariate Analysis
Serial Year :
2006
Journal title :
Journal of Multivariate Analysis
Record number :
1558563
Link To Document :
بازگشت