Title of article :
Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods
Author/Authors :
Bauwens، نويسنده , , Luc and Bos، نويسنده , , Charles S. and van Dijk، نويسنده , , Herman K. and van Oest، نويسنده , , Rutger D.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2004
Pages :
25
From page :
201
To page :
225
Abstract :
Adaptive radial-based direction sampling (ARDS) algorithms are specified for Bayesian analysis of models with non-elliptical, possibly, multimodal target distributions. A key step is a radial-based transformation to directions and distances. After the transformation a Metropolis-Hastings method or, alternatively, an importance sampling method is applied to evaluate generated directions. Next, distances are generated from the exact target distribution. An adaptive procedure is applied to update the initial location and covariance matrix in order to sample directions in an efficient way. The ARDS algorithms are illustrated on a regression model with scale contamination and a mixture model for economic growth of the USA.
Keywords :
Markov chain Monte Carlo , importance sampling , Radial coordinates
Journal title :
Journal of Econometrics
Serial Year :
2004
Journal title :
Journal of Econometrics
Record number :
1558632
Link To Document :
بازگشت