Title of article :
On kernel method for sliced average variance estimation
Author/Authors :
Zhu، نويسنده , , Li-Ping and Zhu، نويسنده , , Li-Xing، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Abstract :
In this paper, we use the kernel method to estimate sliced average variance estimation (SAVE) and prove that this estimator is both asymptotically normal and root n consistent. We use this kernel estimator to provide more insight about the differences between slicing estimation and other sophisticated local smoothing methods. Finally, we suggest a Bayes information criterion (BIC) to estimate the dimensionality of SAVE. Examples and real data are presented for illustrating our method.
Keywords :
Asymptotic normality , dimension reduction , Kernel Estimation , Sliced average variance estimation , Sliced inverse regression , Slicing estimation , Bandwidth selection
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis