Title of article :
Robust estimation in generalized semiparametric mixed models for longitudinal data
Author/Authors :
Qin، نويسنده , , Guoyou and Zhu، نويسنده , , Zhongyi، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Pages :
26
From page :
1658
To page :
1683
Abstract :
In this paper, we consider robust generalized estimating equations for the analysis of semiparametric generalized partial linear mixed models (GPLMMs) for longitudinal data. We approximate the non-parametric function in the GPLMM by a regression spline, and make use of bounded scores and leverage-based weights in the estimating equation to achieve robustness against outliers and influential data points, respectively. Under some regularity conditions, the asymptotic properties of the robust estimators are investigated. To avoid the computational problems involving high-dimensional integrals in our estimators, we adopt a robust Monte Carlo Newton–Raphson (RMCNR) algorithm for fitting GPLMMs. Small simulations are carried out to study the behavior of the robust estimates in the presence of outliers, and these estimates are also compared to their corresponding non-robust estimates. The proposed robust method is illustrated in the analysis of two real data sets.
Keywords :
B-Spline , Longitudinal data , metropolis algorithm , Newton–Raphson algorithm , Partial linear models , Robustness , Generalized Linear Models , Mixed model
Journal title :
Journal of Multivariate Analysis
Serial Year :
2007
Journal title :
Journal of Multivariate Analysis
Record number :
1558762
Link To Document :
بازگشت