Title of article :
Parameter estimation of selfsimilarity exponents
Author/Authors :
Becker-Kern، نويسنده , , Peter and Pap، نويسنده , , Gyula، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2008
Pages :
24
From page :
117
To page :
140
Abstract :
The characteristic feature of operator selfsimilar stochastic processes is that a linear rescaling in time is equal in the sense of distributions to a linear operator rescaling in space, which in turn is characterized by the selfsimilarity exponent. The growth behaviour of such processes in any radial direction is determined by the real parts of the eigenvalues of the selfsimilarity exponent. We extend an estimation method of Meerschaert and Scheffler [M.M. Meerschaert, H.-P. Scheffler, Moment estimator for random vectors with heavy tails, J. Multivariate Anal. 71 (1999) 145–159, M.M. Meerschaert, H.-P. Scheffler, Portfolio modeling with heavy tailed random vectors, in: S.T. Rachev (Ed.), Handbook of Heavy Tailed Distributions in Finance, Elsevier Science B.V., Amsterdam, 2003, pp. 595–640] to be applicable for estimating the real parts of the eigenvalues of the selfsimilarity exponent and corresponding spectral directions given by the eigenvectors. More generally, the results are applied to operator semi-selfsimilar processes, which obey a weaker scaling property, and to certain Ornstein–Uhlenbeck type processes connected to operator semi-selfsimilar processes via Lampertiʹs transformation.
Keywords :
Ornstein–Uhlenbeck type process , Parameter estimation , Selfsimilarity exponent , spectral decomposition , Operator semi-selfsimilar process
Journal title :
Journal of Multivariate Analysis
Serial Year :
2008
Journal title :
Journal of Multivariate Analysis
Record number :
1558813
Link To Document :
بازگشت