Title of article :
Estimation of copula-based semiparametric time series models
Author/Authors :
Chen، نويسنده , , Xiaohong and Fan، نويسنده , , Yanqin، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Pages :
29
From page :
307
To page :
335
Abstract :
This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric marginal distributions and parametric copula functions, while the copulas capture all the scale-free temporal dependence of the processes. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic properties are established under easily verifiable conditions. These results are used to obtain root-n consistent and asymptotically normal estimators of important features of the transition distribution such as the (nonlinear) conditional moments and conditional quantiles. The semiparametric conditional quantile estimators are automatically monotonic across quantiles, which is attractive for portfolio conditional value-at-risk calculations.
Keywords :
Copula , Nonlinear Markov models , Semiparametric estimation , Conditional moment , Conditional quantile
Journal title :
Journal of Econometrics
Serial Year :
2006
Journal title :
Journal of Econometrics
Record number :
1558846
Link To Document :
بازگشت