Title of article :
MMC techniques for limited dependent variables models: Implementation by the branch-and-bound algorithm
Author/Authors :
Jouneau-Sion، نويسنده , , Frédéric and Torrès، نويسنده , , Olivier، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Pages :
34
From page :
479
To page :
512
Abstract :
We propose a finite sample approach to some of the most common limited dependent variables models. The method rests on the maximized Monte Carlo (MMC) test technique proposed by Dufour [1998. Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard asymptotics. Journal of Econometrics, this issue]. We provide a general way for implementing tests and confidence regions. We show that the decision rule associated with a MMC test may be written as a Mixed Integer Programming problem. The branch-and-bound algorithm yields a global maximum in finite time. An appropriate choice of the statistic yields a consistent test, while fulfilling the level constraint for any sample size. The technique is illustrated with numerical data for the logit model.
Keywords :
Branch-and-bound algorithm , Limited dependent variables model , Finite sample inference , Randomized tests , Maximized Monte Carlo tests
Journal title :
Journal of Econometrics
Serial Year :
2006
Journal title :
Journal of Econometrics
Record number :
1558980
Link To Document :
بازگشت