Title of article :
Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations
Author/Authors :
Hang Chan، نويسنده , , Ngai and Deng، نويسنده , , Shi-Jie and Peng، نويسنده , , Liang and Xia، نويسنده , , Zhendong، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Pages :
21
From page :
556
To page :
576
Abstract :
ARCH and GARCH models are widely used to model financial market volatilities in risk management applications. Considering a GARCH model with heavy-tailed innovations, we characterize the limiting distribution of an estimator of the conditional value-at-risk (VaR), which corresponds to the extremal quantile of the conditional distribution of the GARCH process. We propose two methods, the normal approximation method and the data tilting method, for constructing confidence intervals for the conditional VaR estimator and assess their accuracies by simulation studies. Finally, we apply the proposed approach to an energy market data set.
Keywords :
GARCH models , Heavy tail , Tail empirical process , Data tilting , Value-at-Risk
Journal title :
Journal of Econometrics
Serial Year :
2007
Journal title :
Journal of Econometrics
Record number :
1559146
Link To Document :
بازگشت