Title of article :
Local multiplicative bias correction for asymmetric kernel density estimators
Author/Authors :
Hagmann، نويسنده , , M. and Scaillet، نويسنده , , O.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Pages :
37
From page :
213
To page :
249
Abstract :
We consider semiparametric asymmetric kernel density estimators when the unknown density has support on [ 0 , ∞ ) . We provide a unifying framework which relies on a local multiplicative bias correction, and contains asymmetric kernel versions of several semiparametric density estimators considered previously in the literature. This framework allows us to use popular parametric models in a nonparametric fashion and yields estimators which are robust to misspecification. We further develop a specification test to determine if a density belongs to a particular parametric family. The proposed estimators outperform rival non- and semiparametric estimators in finite samples and are easy to implement. We provide applications to loss data from a large Swiss health insurer and Brazilian income data.
Keywords :
Semiparametric density estimation , Asymmetric kernel , Income distribution , Health insurance , specification testing , Loss distribution
Journal title :
Journal of Econometrics
Serial Year :
2007
Journal title :
Journal of Econometrics
Record number :
1559242
Link To Document :
بازگشت