Title of article :
Testing multivariate distributions in GARCH models
Author/Authors :
Bai، نويسنده , , Jushan and Chen، نويسنده , , Zhihong، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2008
Pages :
18
From page :
19
To page :
36
Abstract :
In this paper, we consider testing distributional assumptions in multivariate GARCH models based on empirical processes. Using the fact that joint distribution carries the same amount of information as the marginal together with conditional distributions, we first transform the multivariate data into univariate independent data based on the marginal and conditional cumulative distribution functions. We then apply the Khmaladzeʹs martingale transformation (K-transformation) to the empirical process in the presence of estimated parameters. The K-transformation eliminates the effect of parameter estimation, allowing a distribution-free test statistic to be constructed. We show that the K-transformation takes a very simple form for testing multivariate normal and multivariate t-distributions. The procedure is applied to a multivariate financial time series data set.
Keywords :
Multivariate normality , Multivariate t , K-transformation , GARCH , Brownian motion , Distribution-free tests
Journal title :
Journal of Econometrics
Serial Year :
2008
Journal title :
Journal of Econometrics
Record number :
1559336
Link To Document :
بازگشت