Title of article :
Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility
Author/Authors :
Chen، نويسنده , , Gongmeng and Choi، نويسنده , , Yoon K. and Zhou، نويسنده , , Yong، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2008
Pages :
36
From page :
227
To page :
262
Abstract :
In this paper, we propose two estimators, an integral estimator and a discretized estimator, for the wavelet coefficient of regression functions in nonparametric regression models with heteroscedastic variance. These estimators can be used to test the jumps of the regression function. The model allows for lagged-dependent variables and other mixing regressors. The asymptotic distributions of the statistics are established, and the asymptotic critical values are analytically obtained from the asymptotic distribution. We also use the test to determine consistent estimators for the locations of change points. The jump sizes and locations of change points can be consistently estimated using wavelet coefficients, and the convergency rates of these estimators are derived. We perform some Monte Carlo simulations to check the powers and sizes of the test statistics. Finally, we give practical examples in finance and economics to detect changes in stock returns and short-term interest rates using the empirical wavelet method.
Keywords :
Nonparametric regression , Change points , Kernel Estimation , ? -mixing , Wavelet coefficient , Conditional heteroscedastic variance , Local polynomial smoother
Journal title :
Journal of Econometrics
Serial Year :
2008
Journal title :
Journal of Econometrics
Record number :
1559360
Link To Document :
بازگشت