Title of article :
On the distribution of zeros of a sequence of entire functions approaching the Riemann zeta function
Author/Authors :
Mora، نويسنده , , G. and Sepulcre، نويسنده , , J.M.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
7
From page :
409
To page :
415
Abstract :
In this paper we study the distribution of zeros of each entire function of the sequence { G n ( z ) ≡ 1 + 2 z + ⋯ + n z : n ⩾ 2 } , which approaches the Riemann zeta function for Re z < − 1 , and is closely related to the solutions of the functional equations f ( z ) + f ( 2 z ) + ⋯ + f ( n z ) = 0 . We determine the density of the zeros of G n ( z ) on the critical strip where they are situated by using almost-periodic functions techniques. Furthermore, by using a theorem of Kronecker, we also establish a formula for the number of zeros of G n ( z ) inside certain rectangles in the critical strip.
Keywords :
Almost-periodic functions , Functional equations , Zeros of entire functions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1559502
Link To Document :
بازگشت