Title of article :
Nonhomogeneous boundary value problems for some nonlinear equations with singular ϕ-Laplacian
Author/Authors :
Bereanu، نويسنده , , C. and Mawhin، نويسنده , , J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
Using Leray–Schauder degree theory we obtain various existence results for the quasilinear equation problems ( ϕ ( u ′ ) ) ′ = f ( t , u , u ′ ) submitted to nonhomogeneous Dirichlet or nonlinear Neumann–Steklov boundary conditions on [ 0 , T ] , when ϕ : ] − a , a [ → R is an increasing homeomorphism, ϕ ( 0 ) = 0 . We compare the results with the ones proved earlier in the homogeneous case.
Keywords :
Nonhomogeneous Dirichlet problem , Nonlinear Neumann–Steklov problem , Lower and upper solutions , Leray–Schauder degree , ?-Laplacian , Ambrosetti–Prodi problem
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications