Title of article :
A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation
Author/Authors :
Zhang، نويسنده , , Xibin and Brooks، نويسنده , , Robert D. and King، نويسنده , , Maxwell L.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
This paper presents a Bayesian approach to bandwidth selection for multivariate kernel regression. A Monte Carlo study shows that under the average squared error criterion, the Bayesian bandwidth selector is comparable to the cross-validation method and clearly outperforms the bootstrapping and rule-of-thumb bandwidth selectors. The Bayesian bandwidth selector is applied to a multivariate kernel regression model that is often used to estimate the state-price density of Arrow–Debreu securities with the S&P 500 index options data and the DAX index options data. The proposed Bayesian bandwidth selector represents a data-driven solution to the problem of choosing bandwidths for the multivariate kernel regression involved in the nonparametric estimation of the state-price density pioneered by Aït-Sahalia and Lo [Aït-Sahalia, Y., Lo, A.W., 1998. Nonparametric estimation of state-price densities implicit in financial asset prices. The Journal of Finance, 53, 499, 547.]
Keywords :
Bootstrapping , Black–Scholes formula , cross-validation , Time to maturity , Markov chain Monte Carlo
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics