Title of article :
Generalized convexity in non-regular programming problems with inequality-type constraints
Author/Authors :
Hernلndez-Jiménez، نويسنده , , B. and Rojas-Medar، نويسنده , , M.A. and Osuna-Gَmez، نويسنده , , R. and Beato-Moreno، نويسنده , , A.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
10
From page :
604
To page :
613
Abstract :
Convexity plays a very important role in optimization for establishing optimality conditions. Different works have shown that the convexity property can be replaced by a weaker notion, the invexity. In particular, for problems with inequality-type constraints, Martin defined a weaker notion of invexity, the Karush–Kuhn–Tucker-invexity (hereafter KKT-invexity), that is both necessary and sufficient to obtain Karush–Kuhn–Tucker-type optimality conditions. It is well known that for this result to hold the problem has to verify a constraint qualification, i.e., it must be regular or non-degenerate. In non-regular problems, the classical optimality conditions are totally inapplicable. Meaningful results were obtained for problems with inequality-type constraints by Izmailov. They are based on the 2-regularity condition of the constraints at a feasible point. In this work, we generalize Martinʹs result to non-regular problems by defining an analogous concept, the 2-KKT-invexity, and using the characterization of the tangent cone in the 2-regular case and the necessary optimality condition given by Izmailov.
Keywords :
Non-regular problem , KKT-invexity , Generalized convexity , Optimality conditions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1559822
Link To Document :
بازگشت