Title of article :
Bayesian semiparametric stochastic volatility modeling
Author/Authors :
Jensen، نويسنده , , Mark J. and Maheu، نويسنده , , John M.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
11
From page :
306
To page :
316
Abstract :
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, nonparametric Bayesian methods are used to flexibly model the skewness and kurtosis of the distribution while the dynamics of volatility continue to be modeled with a parametric structure. Our semiparametric Bayesian approach provides a full characterization of parametric and distributional uncertainty. A Markov chain Monte Carlo sampling approach to estimation is presented with theoretical and computational issues for simulation from the posterior predictive distributions. An empirical example compares the new model to standard parametric stochastic volatility models.
Keywords :
Dirichlet process mixture prior , Bayesian nonparametrics , Markov chain Monte Carlo , Mixture models , stochastic volatility
Journal title :
Journal of Econometrics
Serial Year :
2010
Journal title :
Journal of Econometrics
Record number :
1559974
Link To Document :
بازگشت