Title of article :
A local central limit theorem on the Laguerre hypergroup
Author/Authors :
Nessibi، نويسنده , , M.M.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
We consider here the Laguerre hypergroup ( K , * α ) , where K = [ 0 , + ∞ [ × R and * α a convolution product on K coming from the product formula satisfied by the Laguerre functions L m ( α ) ( m ∈ N , α ⩾ 0 ). We set on this hypergroup a local central limit theorem which consists to give a weakly estimate of the asymptotic behavior of the convolution powers μ * α k = μ * α ⋯ * α μ (k times), μ being a given probability measure satisfying some regularity conditions on this hypergroup. It is also given a central local limit theorem for some particular radial probability measures on the ( 2 n + 1 ) -dimensional Heisenberg group H n .
Keywords :
Heisenberg group , Laguerre functions , hypergroup , harmonic analysis , convolution , Fourier transform , Laguerre hypergroup , Local limit theorem , Levyיs continuity theorem , Bessel functions , Probability measure
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications