Title of article :
Infinite horizon BSDEs with dissipative coefficients in Hilbert spaces and applications
Author/Authors :
Qiao، نويسنده , , Huijie، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
In this paper we study a class of infinite horizon backward stochastic differential equations (BSDEs) of the form d Y ( t ) = λ Y ( t ) d t − f ( t , Y ( t ) , Z ( t ) ) d t + Z ( t ) d W ( t ) , 0 ⩽ t < ∞ , in a real separable Hilbert space, where λ is a given real parameter and the coefficient f is dissipative in y and Lipschitz in z. By Yosida approximation to dissipative mappings we show existence and uniqueness of the solutions for these equations. This result is applied to construct unique viscosity solutions to semilinear elliptic partial differential equations (PDEs).
Keywords :
Infinite horizon BSDEs , Dissipative mappings , Yosida approximation , viscosity solution
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications