Title of article :
A noncommutative Brooks–Jewett Theorem
Author/Authors :
Chetcuti، نويسنده , , E. and Hamhalter، نويسنده , , J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
7
From page :
839
To page :
845
Abstract :
In classical measure theory the Brooks–Jewett Theorem provides a finitely-additive-analogue to the Vitali–Hahn–Saks Theorem. In this paper, it is studied whether the Brooks–Jewett Theorem allows for a noncommutative extension. It will be seen that, in general, a bona-fide extension is not valid. Indeed, it will be shown that a C * -algebra A satisfies the Brooks–Jewett property if, and only if, it is Grothendieck, and every irreducible representation of A is finite-dimensional; and a von Neumann algebra satisfies the Brooks–Jewett property if, and only if, it is topologically equivalent to an abelian algebra.
Keywords :
von Neumann algebra , C * -algebra , Brooks–Jewett property , Vitali–Hahn–Saks property
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560287
Link To Document :
بازگشت