Title of article :
On the reservoir technique convergence for nonlinear hyperbolic conservation laws – Part I
Author/Authors :
Labbé، نويسنده , , Stéphane and Lorin، نويسنده , , Emmanuel، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
21
From page :
477
To page :
497
Abstract :
This paper is devoted to the analysis of flux schemes coupled with the reservoir technique for approximating hyperbolic equations and linear hyperbolic systems of conservation laws [F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, The reservoir scheme for systems of conservation laws, in: Finite Volumes for Complex Applications, III, Porquerolles, 2002, Lab. Anal. Topol. Probab. CNRS, Marseille, 2002, pp. 247–254 (electronic); F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, Un procédé de réduction de la diffusion numérique des schémas à différence de flux dʹordre un pour les systèmes hyperboliques non linéaires, C. R. Math. Acad. Sci. Paris 335 (7) (2002) 627–632; F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, The reservoir technique: A way to make Godunov-type schemes zero or very low diffusive. Application to Colella–Glaz, Eur. J. Mech. B Fluids 27 (6) (2008)]. We prove the long time convergence of the reservoir technique and its TVD property for some specific but still general configurations. Proofs are based on a precise study of the treatment by the reservoir technique of shock and rarefaction waves.
Keywords :
hyperbolic systems , Finite volume scheme , Numerical diffusion , Convergence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560336
Link To Document :
بازگشت