Title of article :
Bounds on short cylinders and uniqueness in Cauchy problem for degenerate Kolmogorov equations
Author/Authors :
Cinti، نويسنده , , Chiara and Polidoro، نويسنده , , Sergio، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
11
From page :
135
To page :
145
Abstract :
We consider the Cauchy problem for degenerate Kolmogorov equations in the form ∂ t u = ∑ i , j = 1 m a i , j ( x , t ) ∂ x i x j u + ∑ j = 1 m a j ( x , t ) ∂ x j u + ∑ i , j = 1 N b i , j x i ∂ x j u , ( x , t ) ∈ R N × ] 0 , T [ , 1 ⩽ m ⩽ N , as well as in its divergence form. We prove that, if | u ( x , t ) | ⩽ M exp ( a ( t − β + | x | 2 ) ) , for some positive constants a, M and β ∈ ] 0 , 1 [ and u ( ⋅ , 0 ) ≡ 0 , then u ≡ 0 . The proof of the main result is based on some previous uniqueness result and on the application of some “estimates in short cylinders”, previously used by Ferretti in the study of uniformly parabolic operators.
Keywords :
Uniqueness theorems , Cauchy problem , Kolmogorov degenerate equations
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560470
Link To Document :
بازگشت