Title of article :
Three periodic solutions for perturbed second order Hamiltonian systems
Author/Authors :
Cordaro، نويسنده , , Giuseppe and Rao، نويسنده , , Giuseppe، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
6
From page :
780
To page :
785
Abstract :
In this paper we study the existence of three distinct solutions for the following problem − u ¨ + A ( t ) u = ∇ F ( t , u ) + λ ∇ G ( t , u ) a.e. in [ 0 , T ] , u ( T ) − u ( 0 ) = u ˙ ( T ) − u ˙ ( 0 ) = 0 , where λ ∈ R , T is a real positive number, A : [ 0 , T ] → R N × N is a continuous map from the interval [ 0 , T ] to the set of N-order symmetric matrices. We propose sufficient conditions only on the potential F. More precisely, we assume that G satisfies only a usual growth condition which allows us to use a variational approach.
Keywords :
Periodic Solutions , critical point , Second order Hamiltonian systems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560528
Link To Document :
بازگشت