Title of article :
On a class of degenerate and singular elliptic systems in bounded domains
Author/Authors :
Chung، نويسنده , , Nguyen Thanh and Toan، نويسنده , , Hoang Quoc Toan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
10
From page :
422
To page :
431
Abstract :
This paper deals with the nonexistence and multiplicity of nonnegative, nontrivial solutions to a class of degenerate and singular elliptic systems of the form { − div ( h 1 ( x ) ∇ u ) = λ F u ( x , u , v ) in Ω , − div ( h 2 ( x ) ∇ v ) = λ F v ( x , u , v ) in Ω , where Ω is a bounded domain with smooth boundary ∂Ω in R N , N ≧ 2 , and h i : Ω → [ 0 , ∞ ) , h i ∈ L loc 1 ( Ω ) , h i ( i = 1 , 2 ) are allowed to have “essential” zeroes at some points in Ω, ( F u , F v ) = ∇ F , and λ is a positive parameter. Our proofs rely essentially on the critical point theory tools combined with a variant of the Caffarelli–Kohn–Nirenberg inequality in [P. Caldiroli, R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations Appl. 7 (2000) 189–199].
Keywords :
Degenerate , singular , minimum principle , Mountain pass theorem , multiplicity , Nonexistence , Semilinear elliptic systems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560567
Link To Document :
بازگشت